Over the last two centuries, more and more people in the U.S. have been moving out of the country and into cities. The urban population, as a percent, has grown from about 6% in 1800 to over 80% by the end of the last decade. But the rate of growth hasn’t been constant. So how have cities been growing and changing over the past 200 years?

In this lesson students use recursive rules and linear and exponential functions to explore urbanization in the U.S., as well as what different levels of urbanization might mean for future life in the country.

Students will

Given a graph of real-world data, calculate potential linear and exponential rates of change

Develop linear and exponential models for urban population growth and evaluate them for different years

Informally compare the goodness-of-fit for the two models and use them to make predictions

Given a recursive rule to model urbanization, compare and contrast its behavior to the previous models

Vary the parameters of a recursive rule to achieve different long-term behavior

Discuss how different urbanization trends might affect the future of life in the U.S.

Before you begin

Students should be able to describe the difference between linear and exponential functions in terms of rates of change, as well as write explicit formulas based on those rates. Students will also be exposed to recursive rules, so some familiarity with that concept would be helpful, though this lesson could serve as an introduction.

How have video game console speeds changed over time? Students write an exponential function based on the Atari 2600 and Moore's Law, and see whether the model was correct for subsequent video game consoles.

Topic:
Building Functions (BF), Interpreting Categorical and Quantitative Data (ID), Interpreting Functions (IF), Linear, Quadratic, and Exponential Models (LE)

How has the human population changed over time? Students build an exponential model for population growth, and use it to make predictions about the future of our planet.

Topic:
Building Functions (BF), Interpreting Functions (IF), Linear, Quadratic, and Exponential Models (LE)

Do social networks like Facebook make us more connected? Students create a quadratic function to model the number of possible connections as a network grows, and consider the consequences of relying on Facebook for news and information.

Topic:
Building Functions (BF), Creating Equations (CED), Interpreting Functions (IF)

How much should people pay for donuts? Students use linear, rational, and piecewise functions to describe the total and average costs of an order at Carpe Donut.

Topic:
Building Functions (BF), Interpreting Functions (IF)

What's the ideal size for a soda can? Students use the formulas for surface area and volume of a cylinder to design different cans, calculate their cost of production, and find the can that uses the least material to contain a standard 12 ounces of liquid.

How far away from the TV should you sit? Students use right triangle trigonometry and a rational function to explore the percent of your visual field that is occupied by the area of a television.

Topic:
Building Functions (BF), Creating Equations (CED), Interpreting Functions (IF), Reasoning with Equations and Inequalities (REI), Similarity, Right Triangles, and Trigonometry (SRT)

How can you make money in a pyramid scheme? Students learn about how pyramid schemes work (and how they fail), and use geometric sequences to model the exponential growth of a pyramid scheme over time.

Topic:
Building Functions (BF), Linear, Quadratic, and Exponential Models (LE), Seeing Structure in Expressions (SSE)

Why hasn't everyone already died of a contagion? And, if vampires exist, shouldn't we all be sucking blood by now? Students model the exponential growth of a contagion and use logarithms and finite geometric series to determine the time needed for a disease to infect the entire population. They'll also informally prove that vampires can't be real.

Topic:
Creating Equations (CED), Linear, Quadratic, and Exponential Models (LE), Seeing Structure in Expressions (SSE)

How much do you really pay when you use a credit card? Students develop an exponential growth model to determine how much an item really ends up costing when purchased on credit.

Topic:
Building Functions (BF), Creating Equations (CED), Linear, Quadratic, and Exponential Models (LE)

Could Inspector Javert have survived the fall? Students use quadratic models to determine how high the bridge was in Les Misérables, and explore the maximum height from which someone can safely jump.

Topic:
Building Functions (BF), Creating Equations (CED), Interpreting Functions (IF)

How much can you trust your memory? Students construct and compare linear and exponential models to explore how much a memory degrades each time it's remembered.

Topic:
Interpreting Functions (IF), Linear, Quadratic, and Exponential Models (LE)

How much should you bid in an auction? Students use probability, expected value, and polynomial functions to develop a profit-maximizing bidding strategy.

Topic:
Building Functions (BF), Interpreting Functions (IF)

How has the iPod depreciated over time? Students compare linear and exponential decay, as well as explore how various products have depreciated and what might account for those differences.

In which MLB ballpark is it hardest to hit a home run? Students find the roots and maxima of quadratic functions to model the trajectory of a potential home-run ball.

Topic:
Creating Equations (CED), Interpreting Functions (IF), Reasoning with Equations and Inequalities (REI)

How much Tylenol can you safely take? Students use exponential functions and logarithms to explore the risks of acetaminophen toxicity, and discuss what they think drug manufacturers should do to make sure people use their products safely.

Topic:
Building Functions (BF), Interpreting Functions (IF), Linear, Quadratic, and Exponential Models (LE), Seeing Structure in Expressions (SSE)

How much should Nintendo charge for the Wii U? Students use linear functions to explore demand for the Wii U console and Nintendo's per-unit profit from each sale. They use those functions to create a quadratic model for Nintendo's total profit and determine the profit-maximizing price for the console.

Topic:
Creating Equations (CED), Building Functions (BF), Interpreting Functions (IF), Reasoning with Equations and Inequalities (REI)

Which size pizza should you order? Students apply the area of a circle formula to write linear and quadratic formulas that measure how much of a pizza is actually pizza, and how much is crust.

Topic:
Building Functions (BF), Creating Equations (CED), Interpreting Functions (IF), Reasoning with Equations and Inequalities (REI)

How have temperatures changed around the world? Students use trigonometric functions to model annual temperature changes at different locations around the globe and explore how the climate has changed in various cities over time.

Topic:
Building Functions (BF), Interpreting Functions (IF)

How should pharmaceutical companies decide what to develop? In this lesson, students use linear and quadratic functions to explore how much pharmaceutical companies expect to make from different drugs, and discuss ways to incentivize companies to develop medications that are more valuable to society.

Topic:
Building Functions (BF), Creating Equations (CED), Interpreting Functions (IF), Linear, Quadratic, and Exponential Models (LE)

How much should companies pay their employees? Students graph and solve systems of linear equations in order to examine the effects of wage levels on labor and consumer markets, and they discuss the possible pros and cons of increasing the minimum wage.

Topic:
Linear, Quadratic, and Exponential Models (LE), Reasoning with Equations and Inequalities (REI)

Sign In

Like the jacket, this lesson is for Members only.

Mathalicious lessons provide teachers with an opportunity to teach standards-based math through real-world topics that students care about.

How have video game console speeds changed over time? Students write an exponential function based on the Atari 2600 and Moore's Law, and see whether the model was correct for subsequent video game consoles.

Topic:
Building Functions (BF), Interpreting Categorical and Quantitative Data (ID), Interpreting Functions (IF), Linear, Quadratic, and Exponential Models (LE)