Lessons in Units

CCSS UnitsWhat’s the best strategy for creating a March Madness bracket? Students use probability to discover that it’s basically impossible to correctly predict every game in the tournament. Nevertheless, that doesn’t stop people from trying.

How much confidence should you place in online ratings? Students use ratios and averages to explore the different ways products can be rated online.

How can we improve our calendar? Students examine some other ways to keep track of dates, and use number sense and function concepts to convert between different calendars.

Can you predict a country's Winter Olympic performance? Students analyze scatterplots and correlation coefficients to pick out the best predictive model for Olympic success.

How fast does hair grow? Students analyze a scatterplot, create a line of best fit, and interpret slope as the rate of hair growth over time.

How is wealth distributed in the United States? Students use measures of center, five-number summaries, and box plots to examine different distributions while digging into one of the most important economic and political issues facing the nation.

What's the ideal size for a soda can? Students use the formulas for surface area and volume of a cylinder to design different cans, calculate their cost of production, and find the can that uses the least material to contain a standard 12 ounces of liquid.

What's an acceptable dating range? Students use linear equations and linear inequalities to examine the May-December romance, and ask whether the *Half Plus Seven* rule of thumb is a good one.

What are some ways to encrypt secret messages? Students explore function concepts using ciphers to encrypt messages both graphically and algebraically; they try to decrypt some messages too. In the end, they’ll learn what makes for a useful cipher, and what makes a cipher impossible to decode.

How do you determine the best scorer in basketball? Students compare LeBron James and Tyson Chandler in various ways, from total points, to points per game/minute, to a new measure called *net points* in order to decide.

How big is the White House? Students build scale models to determine the surface area and volume of America's most famous home.

How many tickets should airlines sell? Students use probability and expected value to investigate the overbooking phenomenon and why airlines make the decisions they do.

Should stores open on Thanksgiving Day? Students use game theory, payoff matrices, and the famous Prisoner's Dilemma to explore why stores keep opening earlier and earlier. And earlier.

How much should vowels cost on *Wheel of Fortune*? Students use ratios and percents to explore what would happen if *Wheel of Fortune* charged prices for vowels based on how often they come up.

How long does it take to burn off food from McDonald's? Students use unit rates and proportional reasoning to determine how long they'd have to exercise to burn off different McDonald's menu items.